
Programming Tools for working with  
Design Decisions in Code

Sahar Mehrpour, Thomas D. LaToza

PLATEAU2021

Design Decisions in Code

• Design decisions are choices developers make between alternatives.  
Design rules are constraints on code imposed by design decisions. 

• Design decisions define how functional or non-functional requirements are satisfied. 

• Developers need to understand them to write correct and maintainable code. 

• Traditionally, developers write design decisions in documentation. 

• However, documentation is often outdated and untrustworthy, and developers reverse
engineer design decisions from code.

2

Design Decisions in Code

• We propose a new vision for documentation: Active Documentation

• Documentation are viewed as specifications that can be checked against code.

3

Understandable by developers

Editable as the code or design changes

Help in reasoning about design decisions

Provide positive examples as well as violations in code

Overview

4

Developer Goals  
when working with
design decisions

and 
Existing Tool Support for

Helping Developers
achieve their Goals

Background

Potential of Tools
in Detecting
Violations of

Design Decisions

Making design
decisions

checkable and
documentation

“active"

Writing
Checkable Design

Decisions

Suggesting
Design Decisions

from Code

Our Proposed Approach and Implemented ToolsDesign Decisions  
in Code Review

Overview

4

Developer Goals  
when working with
design decisions

and 
Existing Tool Support for

Helping Developers
achieve their Goals

Background

Background: Developer Goals when Working with Design Decisions

5

Goal Example

Goal 1 Identify potential alternatives How should functionality be decomposed into classes to achieve
extensibility and maintainability?

Goal 2 Select an alternative as a design
decision

Is the best alternative for this situation the Command Pattern or
Publish/Subscribe?

Goal 3 Document the chosen alternative Communicate the design decision of selecting the Command pattern
to future developers through documentation.

Goal 4 Check hypothesized design
decisions against code

After reading the code, a developer hypothesizes that the Command
pattern is being used and seeks additional evidence to test this
hypothesis.

Goal 5 Find and follow relevant design
decisions

While creating a new class to implement a new user action, a
developer tries to determine how it should be connected to existing
functionality that captures user toolbar actions.

Goal 6 Determine why an alternative was
selected

After seeing that communication is mediated through Command
patterns, the developer tries to determine why it was selected instead
of a Publish/Subscribe approach.

Background: Existing Tool Support for Working with Design Decisions

6

Software Query Languages and ToolsReverse Engineering Tools

Design Pattern Catalog Tools

Design Rationale Tools Documentation Generation Tools Static Analysis Tools System Architecture Tools

Is the design decision captured
when a developer makes a decision?

How does a developer find
design decisions?

Is the decision captured by linking to an
existing explanation of a design decision?

What parts of the design
decision are captured?

How is design rationale expressed?

Is the rule about dependencies between modules?

Test hypothesized design decisions by
identifying examples

Use examples to infer
design decisions

Yes No

Yes No

design rationale (not checked against code)

As alternatives and explanation
of a choice between alternatives

As explanation of a choice within the
description of the design decision

design rule (checked against code)

Yes No

Background: Existing Tool Support for helping Developers achieve their goals

7

Identify
Alternatives

Select an
Alternative

Document
the Decision

Test
Hypothesized

Decisions

Find and
Follow

Decisions

Reason about
Decisions

Documentation Generation Tools Partial Partial - Partial Partial Partial

Static Analysis Tools - - Partial Partial Full Partial

Design Rationale Tools Partial Full Full Partial Partial Full

Design Pattern Catalogs Full Full Full Partial Partial Full

System Architecture Tools - - Partial Partial Full Partial

Reverse Engineering Tools Partial - - - Partial -

Software Query Languages and Tools Partial - - Full Partial -

Overview

8

Potential of Tools
in Detecting
Violations of

Design Decisions

Design Decisions  
in Code Review

Making design
decisions

checkable and
documentation

“active"

Writing
Checkable Design

Decisions

Suggesting
Design Decisions

from Code

Our Proposed Approach and Implemented ToolsBackground

Developer Goals  
when working with
design decisions

and 
Existing Tool Support for

Helping Developers
achieve their Goals

Overview

8

Potential of Tools
in Detecting
Violations of

Design Decisions

Design Decisions  
in Code ReviewBackground

Developer Goals  
when working with
design decisions

and 

Design Decisions in Code Review

9

• We studied the types of decisions developers fail to follow by analyzing code review
defects.

• Prior studies analyzed how individual tools (e.g., FindBugs) can detect code review defects.

- 35% to 95% of defects reported issue trackers could be found by FindBugs, JLint, and
PMD. [Thung et al., ASE 2012]

- 4.5% of defects in Defects4J could be detected by Error Prone, Infer, SpotBugs. [Habib
and Pradel, ASE 2018]

- 16% of issues in review comments can be detected by PMD. [Singh et al., VL/HCC 2018]

• Not much information on the potential for creating more effective tools.

Design Decisions in Code Review: Process

10

• We study the potential of tools in checking different types of design decisions by analyzing
code review comments qualitatively.

• We systematically collected and analyzed more than 1300 review comments. 

• We used all available information to formulate each defect as a violation of a design rule. 

• We mapped the design rules to existing types of program analysis tools by comparing the
underlying techniques of tools and properties of design rules. 

• We found a taxonomy of program analysis tools focusing on the properties of rules they
check.

Design Decisions in Code Review: Taxonomy of Program Analysis Tools

11

Representation of Code Origin of Defects Consequences of defects

Categories AST Code Execution Strings Language Specifications Best Practices Code Quality Behavioral

Style Checkers ✓ ✓ ✓ ✓
Continuous Integration Tools ✓ ✓ ✓ ✓ ✓
Data Flow Analyzers ✓ ✓ ✓ ✓ ✓
Architectural Style Checkers ✓ ✓ ✓ ✓
Test Suite Quality Checkers ✓ ✓ ✓ ✓ indirect indirect
Dead Code Detectors ✓ ✓ ✓ ✓
Code Clone Detectors ✓ ✓ ✓ ✓
Compilers ✓ ✓ ✓
String Compilers ✓ ✓ ✓ ✓ ✓
Code Smell Detectors ✓ ✓ ✓ ✓
Memory Leak Detectors ✓ ✓ ✓
AST Pattern Checkers ✓ ✓ ✓ ✓

Design Decisions in Code Review: Results

12

• Existing program analysis tools may be able to detect 76% of code review defects.

• Style Checkers and AST Pattern Checkers are most broadly applicable, with each
potentially able to detect more than half defects.

• Many defects are violations of project-specific design rules.

• Defects not detectable by program analysis tools lack formalism and require human
judgement.

Overview

13

Making design
decisions

checkable and
documentation

“active"

Our Proposed Approach and Implemented Tools

Writing
Checkable Design

Decisions

Suggesting
Design Decisions

from Code

Potential of Tools
in Detecting
Violations of

Design Decisions

Background Design Decisions  
in Code Review

Developer Goals  
when working with
design decisions

and 
Existing Tool Support for

Helping Developers
achieve their Goals

Overview

13

Making design
decisions

checkable and
documentation

“active"

Our Proposed Approach and Implemented Tools

Potential of Tools
in Detecting
Violations of

Design Decisions

Background Design Decisions  
in Code Review

Developer Goals  
when working with
design decisions

and 

+Design rules are translated into constraints and actively
checked against code. 

Wherever a design rule applies to code, an active link
between the documentation and code is generated. 

Developers can actively update the documentation.

14

Making Documentation Active

To help developers work with design decisions, we propose a new form of documentation:
Active Documentation 
 

Mehrpour, S., LaToza, T. D., Kindi, R. K. Active Documentation: Helping Developers Follow Design Decisions, VL/HCC 2019

Design rules are translated into constraints and actively
checked against code. 

Wherever a design rule applies to code, an active link
between the documentation and code is generated. 

Developers can actively update the documentation.

14

Making Documentation Active

To help developers work with design decisions, we propose a new form of documentation:
Active Documentation 
 

Mehrpour, S., LaToza, T. D., Kindi, R. K. Active Documentation: Helping Developers Follow Design Decisions, VL/HCC 2019

Design rules are translated into constraints and actively
checked against code. 

Wherever a design rule applies to code, an active link
between the documentation and code is generated. 

Developers can actively update the documentation.

14

Making Documentation Active

To help developers work with design decisions, we propose a new form of documentation:
Active Documentation 
 

Mehrpour, S., LaToza, T. D., Kindi, R. K. Active Documentation: Helping Developers Follow Design Decisions, VL/HCC 2019

Design rules are translated into constraints and actively
checked against code. 

Wherever a design rule applies to code, an active link
between the documentation and code is generated. 

Developers can actively update the documentation.

14

Making Documentation Active

To help developers work with design decisions, we propose a new form of documentation:
Active Documentation 
 

Mehrpour, S., LaToza, T. D., Kindi, R. K. Active Documentation: Helping Developers Follow Design Decisions, VL/HCC 2019

Making Documentation Active: ActiveDocumentation

15

Examples

Violations

Tags

Design Decisions
Related to a File

Making Documentation Active: ActiveDocumentation Evaluation

16

• We conducted a user study with 21 participants. 

• We asked them to add a new feature in an unfamiliar codebase. 

• We found ActiveDocumentation helped participants work quickly and successfully with
design decisions.

Overview

17

Our Proposed Approach and Implemented Tools

Writing
Checkable Design

Decisions

Suggesting
Design Decisions

from Code

Making design
decisions

checkable and
documentation

“active"

Potential of Tools
in Detecting
Violations of

Design Decisions

Background Design Decisions  
in Code Review

Developer Goals  
when working with
design decisions

and 
Existing Tool Support for

Helping Developers
achieve their Goals

Overview

17

Our Proposed Approach and Implemented Tools

Writing
Checkable Design

Decisions

Making design
decisions

checkable and
documentation

“active"

Potential of Tools
in Detecting
Violations of

Design Decisions

Background Design Decisions  
in Code Review

Developer Goals  
when working with
design decisions

and 

Helping Developers Write Checkable Design Decisions

18

• To make documentation checkable, developers should be able to write checkable design
decisions.

• Existing extensible tools like PMD or Error Prone enable developers to write custom rules.

• But they require specialized knowledge of program analysis or complex query notations.

• We introduce two complimentary techniques to write checkable design decisions:

Mehrpour, S., LaToza, T. D., Sarvari, H., RulePad: Interactive Authoring of Checkable Design Rules, ESEC/FSE 2020

Snippet-Based Authoring: code-based templates, can be ambiguous

Semi-Natural Language Authoring: expressive, natural

Helping Developers Write Checkable Design Decisions: RulePad

19

Helping Developers Write Checkable Design Decisions: RulePad

19

The Graphical Editor

Helping Developers Write Checkable Design Decisions: RulePad

19

The Textual Editor

Helping Developers Write Checkable Design Decisions: RulePad Evaluation

20

• We conducted a user study with 14 participants, comparing authoring checkable design
decisions in RulePad and PMD. 

• We asked participants to write a few design decisions using RulePad (experimental group)
or PMD (control group). 

• Participants using RulePad were more successful and able to write 13 times more query
elements.

• Participants also reported they are more willing to use RulePad in their everyday work.

Overview

21

Our Proposed Approach and Implemented Tools

Suggesting
Design Decisions

from Code

Writing
Checkable Design

Decisions

Making design
decisions

checkable and
documentation

“active"

Potential of Tools
in Detecting
Violations of

Design Decisions

Background Design Decisions  
in Code Review

Developer Goals  
when working with
design decisions

and 
Existing Tool Support for

Helping Developers
achieve their Goals

Overview

21

Our Proposed Approach and Implemented Tools

Suggesting
Design Decisions

from Code

Writing
Checkable Design

Decisions

Making design
decisions

checkable and
documentation

“active"

Potential of Tools
in Detecting
Violations of

Design Decisions

Background Design Decisions  
in Code Review

Developer Goals  
when working with
design decisions

and 

Suggesting Design Decisions from Code

22

• When design decisions are not written, developers need to find them in code by reverse
engineering.

• Developers either infer design decisions from code examples, or test hypothesized decisions
against code.

• We envision a tool to help developers by suggesting design decisions relevant to the code.

Suggesting Design Decisions from Code: Approach

23

</> 1

</> 2

1
2
3
4
5

6
1
4
2
5

1 2 3 4 5 6 7 8 9 10 11
</> 1
</> 2
</> 3
</> 4

1 2 4
1 2 6
2 4 5 6
4 6 11
5 11

Frequent Itemsets
(co-occurring features)

Feature/Code Unit Table Suggested Design RulesCodebase Features in each Unit1 2

3

4

Suggesting Design Decisions from Code: Challenges and Evaluation

24

• What features should the tool select?

- Standard features observed from examples in other codebases

- Extensibility, allowing developers to add custom features.

• Suggested design decisions should be important to the developer.

- Evaluate the tool by comparing the suggested decisions by the tool and a previously found
corpus of design decisions.

- User study to evaluate the techniques

Programming Tools for working with Design Decisions in Code

25

Sahar Mehrpour, Thomas D. LaToza

Writing
Checkable Design

Decisions

Suggesting
Design Decisions

from Code

Making design
decisions

checkable and
documentation

“active"

</> 1

</> 2

1
2
3
4
5

6
1
4
2
5

1 2 3 4 5 6 7 8 9 10 11
</> 1
</> 2
</> 3
</> 4

1 2 4
1 2 6
2 4 5 6
4 6 11
5 11

Frequent Itemsets
(co-occurring features)

Feature/Code Unit Table Suggested Design RulesCodebase Features in each Unit1 2

3

4

